ES Theory: Success probability

quality difference
object variables

random number with z ~ N(0, o)
random number with z* ~ N(0, 0*?)
parameters of the quality function

success probability

progress rate (with/without selection)
averaged progress rate

number of offspring

random variable

progress coefficients

Table 1: Nomenclature

The quality function is given by:

k=1

k=1

Q=Qo+ > ckye — > deti”s dp >0

(11)

We assume that the parent individual is located at y, =0, k = 1,...,n. Using ES
type mutation: y}c = Yy, + 2k, where
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Now, we use the following two relations in order to simplify (12):
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A sum of normally distributed random numbers results in a normally distributed
random number with the standard deviation given by equation (13). Therefore,
the first term of equation (12) is simply given by z* with z* ~ N(0,06*%). The
sum of n normally distributed random numbers with variance one, results for large
n in the y2-distribution. Since the standard deviation only depends on v/2n, we
neglect the “randomness” of the second term and replace it by its average value
given in equation (14). Thus, we write
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The probability for success is given by:
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Now we substitute p = \/g;* and dz* = V20" dp:
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Using the error function erf(z):
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and o* = 01/ ¢} we can write
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ES Theory: Progress rate

The progress rate ¢’ is defined as follows:
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where AQ is given by equation (14). Since tan « is the gradient at the parent

position, i.e. at yp =0; k=1,...,n, we have
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Therefore, the progress rate is given by
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Using the following equation
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we can simplify equation (22):
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Since the random variable z is symmetric around E [z] = 0, we see from equation

(24) that a positive progress rate can only be achieved with selection. If we assume
(1, A) selection, we have to derive the probability density of a new random variable
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u, which is the largest out of A random numbers z;, i = 1,..., A and z; = N(0,02).
Therefore, after selection we have to replace equation (24) by
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If we denote the probability density of u by wy(u), the expectation value of gb’l’ A
is given by:

b = Blo] = [ um@dn - o2 il (26)
> (k1 cil]?
— ey — o2 = (27)

1
[Zzzl Ci} :
v

- 1 RS

where we have introduced the progress rate coefficients c; x:
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Note, that the formula for the progress rate, equation (27), remains the same even
for the more general (u, A) selection, only the progress rate coefficients change and
are replaced by ¢, x.
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ES theory: 1/5-rule

With the results from the last section, we are now able to determine the step-size
that leads to the maximal progress rate:
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This corresponds to a progress rate of
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At the same time the sucess probability for o, is given by
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