$\Delta Q = Q_N - Q_E$	quality difference
y	object variables
z	random number with $z \sim \mathcal{N}(0, \sigma^2)$
z^*	random number with $z^* \sim \mathcal{N}(0, \sigma^{*2})$
c_k, d_k	parameters of the quality function
$\Pr\left[\Delta Q > 0\right]$	success probability
$\phi', \phi'_{1,\lambda}$	progress rate (with/without selection)
$\phi_{1,\lambda}$	averaged progress rate
λ	number of offspring
u	random variable
$c_{1,\lambda}$	progress coefficients

Table 1: Nomenclature

ES Theory: Success probability

The quality function is given by:

$$Q = Q_0 + \sum_{k=1}^{n} c_k y_k - \sum_{k=1}^{n} d_k y_k^2; \ d_k > 0$$
 (11)

We assume that the parent individual is located at $y_k = 0, k = 1, ..., n$. Using ES type mutation: $y'_k = y_k + z_k$, where

$$z_k \sim \mathcal{N}(0, \sigma^2)$$
 $w(z_k) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{z_k^2}{2\sigma^2}\right)$

is normally distributed with variance σ^2 , we can write

$$\Delta Q = Q_N - Q_E$$

$$= Q_0 + \sum_{k=1}^n c_k y_k' - \sum_{k=1}^n d_k y_k'^2 - Q_0$$

$$= \sum_{k=1}^n c_k z_k - \sum_{k=1}^n d_k z_k^2$$
(12)

Now, we use the following two relations in order to simplify (12):

1.

$$\operatorname{Var}[z^*] = \sum_{k=1}^{n} \operatorname{Var}[c_k z_k] = \sigma^2 \sum_{k=1}^{n} c_k^2$$

$$\Rightarrow \sigma^{*2} = \sigma^2 \sum_{k=1}^n c_k^2$$

$$\Rightarrow \sigma^* = \sigma \sqrt{\sum_{k=1}^n c_k^2}$$
(13)

2.

$$E\left[\sum_{k=1}^{n} d_k z_k^2\right] = \sigma^2 \sum_{k=1}^{n} d_k \tag{14}$$

A sum of normally distributed random numbers results in a normally distributed random number with the standard deviation given by equation (13). Therefore, the first term of equation (12) is simply given by z^* with $z^* \sim \mathcal{N}(0, \sigma^{*2})$. The sum of n normally distributed random numbers with variance one, results for large n in the χ^2 -distribution. Since the standard deviation only depends on $\sqrt{2n}$, we neglect the "randomness" of the second term and replace it by its average value given in equation (14). Thus, we write

$$\Delta Q \approx z^* - \sigma^2 \sum_{k=1}^n d_k; \quad z^* \sim \mathcal{N}(0, \sigma^{*2})$$
 (15)

The probability for success is given by:

$$\Pr\left[\Delta Q > 0\right] = \Pr\left[z^* \ge \sigma^2 \sum_{k=1}^n d_k\right]$$
$$= \frac{1}{\sqrt{2\pi}\sigma^*} \int_{\sigma^2 \sum d_k}^{\infty} \exp\left(-\frac{z^{*2}}{2\sigma^{*2}}\right) dz^* \tag{16}$$

Now we substitute $p = \frac{z^*}{\sqrt{2}\sigma^*}$ and $dz^* = \sqrt{2}\sigma^* dp$:

$$\Pr\left[\Delta Q > 0\right] = \frac{1}{\sqrt{2\pi}\sigma^*} \sqrt{2}\sigma^* \int_{\frac{\sigma^2 \sum d_k}{\sigma^* \sqrt{2}}}^{\infty} e^{-p^2} dp \tag{17}$$

Using the error function erf(x):

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} dp,$$
 (18)

and $\sigma^* = \sigma \sqrt{\sum c_k^2}$ we can write

$$\Pr\left[\Delta Q > 0\right] = \frac{1}{\sqrt{\pi}} \left(\int_0^\infty e^{-p^2} dp - \int_0^{\frac{\sigma \sum d_k}{\sqrt{2\sum c_k^2}}} e^{-p^2} dp \right)$$

$$= \frac{1}{2} \left(1 - \operatorname{erf} \left(\frac{\sigma \sum_{k=1}^{n} d_k}{\sqrt{2 \sum_{k=1}^{n} c_k^2}} \right) \right)$$
 (19)

ES Theory: Progress rate

The progress rate ϕ' is defined as follows:

$$\phi' = \frac{\Delta Q}{\tan \alpha},\tag{20}$$

where ΔQ is given by equation (14). Since $\tan \alpha$ is the gradient at the parent position, i.e. at $y_k = 0$; k = 1, ..., n, we have

$$\tan \alpha = \left[\sum_{k=1}^{n} \left(\frac{\partial Q}{\partial y_k} \right)_{y_k=0}^2 \right]^{\frac{1}{2}} = \left[\sum_{k=1}^{n} c_k^2 \right]^{\frac{1}{2}}.$$
 (21)

Therefore, the progress rate is given by

$$\phi' = \frac{z^*}{\left[\sum_{k=1}^n c_k^2\right]^{\frac{1}{2}}} - \sigma^2 \frac{\sum_{k=1}^n d_k}{\left[\sum_{k=1}^n c_k^2\right]^{\frac{1}{2}}}.$$
 (22)

Using the following equation

$$\operatorname{Var}[z^*] = \sigma^2 \left(\sum_{k=1}^n c_k^2 \right) = \sum_{k=1}^n c_k^2 \operatorname{Var}[z] = \operatorname{Var} \left[\left(\sum_{k=1}^n c_k^2 \right)^{\frac{1}{2}} z \right], \quad (23)$$

we can simplify equation (22):

$$\phi' = z - \sigma^2 \frac{\sum_{k=1}^n d_k}{\left[\sum_{k=1}^n c_k^2\right]^{\frac{1}{2}}}.$$
 (24)

Since the random variable z is symmetric around E[z] = 0, we see from equation (24) that a positive progress rate can only be achieved with selection. If we assume $(1, \lambda)$ selection, we have to derive the probability density of a new random variable u, which is the largest out of λ random numbers z_i , $i = 1, \ldots, \lambda$ and $z_i = \mathcal{N}(0, \sigma^2)$. Therefore, after selection we have to replace equation (24) by

$$\phi'_{1,\lambda} = u - \sigma^2 \frac{\sum_{k=1}^n d_k}{\left[\sum_{k=1}^n c_k^2\right]^{\frac{1}{2}}}.$$
 (25)

If we denote the probability density of u by $w_{\lambda}(u)$, the expectation value of $\phi'_{1,\lambda}$ is given by:

$$\phi_{1,\lambda} = \mathbb{E}\left[\phi'_{1,\lambda}\right] = \int_{-\infty}^{\infty} u \, w_{\lambda}(u) \, du - \sigma^2 \frac{\sum_{k=1}^{n} d_k}{\left[\sum_{k=1}^{n} c_k^2\right]^{\frac{1}{2}}}$$
(26)

$$= \sigma c_{1,\lambda} - \sigma^2 \frac{\sum_{k=1}^n d_k}{\left[\sum_{k=1}^n c_k^2\right]^{\frac{1}{2}}}, \tag{27}$$

$$w_{\lambda} = \frac{\lambda}{\sqrt{2\pi}\sigma} \exp\left(-\frac{u^2}{2\sigma^2}\right) \left\{\frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{u}{\sqrt{2}\sigma}\right)\right]\right\}^{\lambda-1}$$
 (28)

where we have introduced the progress rate coefficients $c_{1,\lambda}$:

$$c_{1,\lambda} = \frac{\sqrt{2}\lambda}{\sqrt{\pi}2^{\lambda-1}} \int_{-\infty}^{\infty} ze^{-z^2} \left[1 + \operatorname{erf}(z)\right]^{\lambda-1} dz$$
 (29)

Note, that the formula for the progress rate, equation (27), remains the same even for the more general (μ, λ) selection, only the progress rate coefficients change and are replaced by $c_{\mu,\lambda}$.

ES theory: 1/5-rule

With the results from the last section, we are now able to determine the step-size that leads to the maximal progress rate:

$$\frac{\partial \phi_{1,\lambda}}{\partial \sigma} = 0 \quad \Rightarrow \quad c_{1,\lambda} = 2 \sigma \frac{\sum_{k=1}^{n} d_k}{\left[\sum_{k=1}^{n} c_k^2\right]^{\frac{1}{2}}}$$

$$\Rightarrow \quad \sigma_{opt} = \frac{c_{1,\lambda}}{2} \frac{\left[\sum_{k=1}^{n} c_k^2\right]^{\frac{1}{2}}}{\sum_{k=1}^{n} d_k}.$$
(30)

This corresponds to a progress rate of

$$\phi_{1,\lambda,opt} = \frac{1}{4} c_{1,\lambda}^2 \frac{\left[\sum_{k=1}^n c_k^2\right]^{\frac{1}{2}}}{\sum_{k=1}^n d_k}$$
(31)

At the same time the sucess probability for σ_{opt} is given by

$$\Pr\left[\Delta Q > 0\right] = \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{\sigma_{opt} \sum_{k=1}^{n} d_k}{\sqrt{2 \sum_{k=1}^{n} c_k^2}}\right) \right)$$
$$= \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{c_{1,\lambda}}{2\sqrt{2}}\right) \right).$$