The Brachistochrone Problem

The Brachistochrone (brachistos (greek): short, chronos (greek): time) is the shape of the curve which connects two points on which a ball (a mass point) will require minimal time to get from point A to point B under the assumption of zero friction. Johann Bernoulli solved the problem in 1696. The Brachistochrone problem is a function optimization problem (we are looking for a curve or a trajectory) that directly leads to the Variational Calculus. Let point A have the coordinates (x_A, y_A) and point B (x_B, y_B) , the times when the ball passes points A and B are t_A, t_B . We can write for the total time required (denoting the balls speed by v):

$$T = \int_{t_A}^{t_B} dt = \frac{1}{v} ds. \tag{8}$$

Furthermore, conservation of energy $(E_{kin} = E_{pot})$ leads to $v = \sqrt{2gy(x)}$. At the same time, the tangential step ds is given by $ds^2 = dx^2 + dy^2$. Thus, we can write

$$T = \int_{x_A}^{x_B} \frac{1}{\sqrt{2gy(x)}} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \stackrel{!}{=} min.$$
 (9)

Variational Calculus

We assume that y(x) is a function of x and seek the extremum of the functional

$$I(y) = \int_{x_0}^{x_1} f\left(x, y, \frac{dy}{dx}\right) dx = \int_{x_0}^{x_1} f(x, y, y') dx$$
 (10)

Now we assume that $y_0(x)$ is an extremum of I(y), thus $\delta I = 0$ and introduce the function $y_{\varepsilon}(x) = y_0(x) + \varepsilon h(x)$, where the function h(x) satisfies the following conditions $h(x_0) = h(x_1) = 0$.

$$I(y_{\varepsilon}) = F(\varepsilon) = \int_{x_0}^{x_1} f\left(x, y_{\varepsilon}, \frac{dy_{\varepsilon}}{dx}\right) dx$$
 (11)

Since we assumed that $y_0(x)$ is an extremum of I(y), we know that

$$\delta I = \left(\frac{dF}{d\varepsilon}\right)_{\varepsilon=0} = F'(\varepsilon = 0) = 0. \tag{12}$$

Therefore, we can write

$$F'(\varepsilon) = \int_{x_0}^{x_1} \frac{df}{d\varepsilon} dx = \int_{x_0}^{x_1} \left(\frac{\partial f}{\partial y_{\varepsilon}} \frac{\partial y_{\varepsilon}}{\partial \varepsilon} + \frac{\partial f}{\partial y'_{\varepsilon}} \frac{\partial y'_{\varepsilon}}{\partial \varepsilon} \right) dx$$
$$= \int_{x_0}^{x_1} \left(\frac{\partial f}{\partial y_{\varepsilon}} h(x) + \frac{\partial f}{\partial y'_{\varepsilon}} h'(x) \right) dx. \tag{13}$$

Partial integration $(\int uv'dx = uv - \int u'v)$ of the second term of the integrand and the boundary condition for h(x) lead to

$$F'(\varepsilon) = \int_{x_0}^{x_1} \left(\frac{\partial f}{\partial y_{\varepsilon}} h(x) - \frac{d}{dx} \left(\frac{\partial f}{\partial y'_{\varepsilon}} \right) h(x) \right) dx$$

$$\Rightarrow \qquad F'(\varepsilon = 0) = \int_{x_0}^{x_1} \left(\frac{\partial f}{\partial y_0} h(x) - \frac{d}{dx} \left(\frac{\partial f}{\partial y'_0} \right) h(x) \right) dx \stackrel{!}{=} 0 \qquad (14)$$

Since equation (14) has to be fulfilled for any h(x), we obtain the Euler-Lagrange differential equation that has to be fulfilled in order that $y_0(x)$ is an extremum of the functional I(y):

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\left(\frac{\partial y}{\partial x} \right)} \right) = 0. \tag{15}$$