The Brachistochrone Problem

The Brachistochrone (brachistos (greek): short, chronos (greek): time) is
the shape of the curve which connects two points on which a ball (a mass
point) will require minimal time to get from point A to point B under the
assumption of zero friction. Johann Bernoulli solved the problem in 1696.
The Brachistochrone problem is a function optimization problem (we are
looking for a curve or a trajectory) that directly leads to the Variational
Calculus. Let point A have the coordinates (x4,y4) and point B (zg,yg),
the times when the ball passes points A and B are t4,tg. We can write for
the total time required (denoting the balls speed by v):

tp 1
T:/ dt = ~ds. 8)
ta v
Furthermore, conservation of energy (Exi, = Epot) leads to v = /29y (z). At

the same time, the tangential step ds is given by ds? = dx? + dy®. Thus, we

can write
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Variational Calculus

We assume that y(z) is a function of x and seek the extremum of the func-
tional
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Now we assume that yo(z) is an extremum of /(y), thus §/ = 0 and introduce

the function y.(z) = yo(z) + eh(z), where the function h(z) satisfies the

following conditions h(zg) = h(z1) = 0.
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Since we assumed that yo(x) is an extremum of I(y), we know that
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Therefore, we can write
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Partial integration ([ wv'dz = uv — [ u'v) of the second term of the integrand
and the boundary condition for h(z) lead to
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Since equation (14) has to be fulfilled for any h(x), we obtain the Euler-
Lagrange differential equation that has to be fulfilled in order that yo(z) is
an extremum of the functional I(y):

of d (of\
TEAN .






